A new HMM topology for shape recognition
نویسندگان
چکیده
This study deals with the shape recognition problem using the Hidden Markov Model (HMM). In many pattern recognition applications, selection of the size and topology of the HMM is mostly done by heuristics or using trial and error methods. It is well known that as the number of states and the non-zero state transition increases, the complexity of the HMM training and recognition algorithms increases exponentially. On the other hand, many studies indicate that increasing the size and non-zero state transition does not always yield better recognition rate. Therefore, designing the HMM topology and estimating the number of states for a specific problem is still an unsolved problem and requires initial investigation on the test data. This study addresses a specific class of recognition problems based on the boundary of shapes. The paper investigates the affect of the HMM topology on the recognition rate. A new topology, called circular HMM, is proposed and tested on the handwritten character recognition problem. The proposed topology is both ergodic and temporal. It eliminates the starting and ending states with the circular state transitions. The experiments indicate excellent performance compared to the classical temporal and ergodic HMM models.
منابع مشابه
A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کاملAdaptive HMM topology for speech recognition
This paper presents an adaptive algorithm for compensating pronunciation variations in hidden Markov model (HMM) based speech recognition. The proposed method aims to adapt the HMM topology and the corresponding HMM parameters to meet the variations of speaker dialects. In adaptive HMM topology, two hypothesis test schemes are designed to detect whether a new speaking variation occurs in state/...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999